REDUCTION OF SOIL INFILTRATION AREA THANKS TO THE WASTEWATER SECONDARY TREATMENT FILTERS
Marcin Spychała 1  
,  
 
 
More details
Hide details
1
Katedra Inżynierii Wodnej i Sanitarnej, Wydział Inżynierii Środowiska i Gospodarki Przestrzennej, Uniwersytet Przyrodniczy w Poznaniu, ul. Piątkowska 94, 60-649 Poznań
Publish date: 2016-05-01
 
Inż. Ekolog. 2016; 47:82–88
KEYWORDS
ABSTRACT
The aim of the article was to determine the feasibility and advisability of the use of secondary filters applied before discharge of wastewater into the ground in the context of the fulfillment of the conditions of the current Regulation of the Minister of Environment of 18 November 2014 on the conditions to be met during the discharge of wastewater into the water or the ground and on substances particularly harmful to the aquatic environment. Due to expected in practice, an application and popularity, as compared variants, reactors having a very simple construction were used. The average values of removal of BOD5, COD and total suspended solids for three secondary filters technologies: biological trickling filter with natural ventilation, sand filter and nonwoven filter were compared. Additionally, as a fourth option a simple mathematical model has been presented. This model allows to estimate of BOD5 at the outflow from biological trickling filter and to verify the empirical data. Despite a large usefulness, it is rarely used in our country. It has been found the possibility of reduction of the infiltration area (surface area after reduction is 38–63% of the initial value) due to the application of secondary filters. In the case of a high initial demand of the terrain area for drainage localization the benefit in costs resulting from the reduction (several thousand of PLN) or may even significantly exceed the cost of buying and installing a cheap secondary filter. In addition, reduction the occupied area of the lot (in extreme cases up to 100 m2) by using the secondary filter allows to use the unoccupied space for other purposes, and thus gives additional economic advantage.
 
REFERENCES (17)
1.
Błażejewski R. 2003. Kanalizacja wsi. PZITS, Poznań.
 
2.
Bruce A.M., Merkens J.C. 1973. Further Studies of Partial Treatment of Sewage by High-Rate Biological Filtration. Water Pollution Control, 72(5), 499.
 
3.
Eckenfelder W.W., Jr. 1961. Trickling Filtration Design and Performance. Journal of the Sanitary Engineering Division, Proc. ASCE, 87(SA4), 33.
 
4.
Germain J.E. 1966. Economical Treatment of Domestic Waste by Plastic-Medium Trickling Filters. Journal of the Water Pollution Control Federation, 38(2), 192.
 
5.
Galler W.S., Gotaas H.B. 1964. Analysis of Biological Filter Variables. Journal of the Sanitary Engineering Division, Proc. ASCE, 90(SA4), 59.
 
6.
Heidrich Z., Kusznik W. 2006. Złoża biologiczne poradnik projektanta. www.terracon-pol.com/data/files... Dostęp: 13.12.2015.
 
7.
Hämmerling M., Spychała M. 2015. Wykorzystanie Wielokryterialnej metody podejmowania decyzji (AHP) do wyboru przydomowej oczyszczalni ścieków z odprowadzaniem ścieków do gruntu. Acta Sci. Pol. Formatio Circumiectus 14(4), w druku.
 
8.
Joint Task Force of the Water Environment Federation and the American Society of Civil Engineers 1992. Design of Municipal Wastewater Treatment Plants: Volume II. Chapters 13–20, WEF Manual of Practice No. 8, ASCE Manual and Report on Engineering Practice No. 76. Water Environment Federation, Alexandria, VA; American Society of Civil Engineers, New York.
 
9.
Kopeć Ł. 2009. Wpływ recyrkulacji zewnętrznej na jakość ścieków w oczyszczalniach Bioclere. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska, Tom 11, 1373–1380.
 
10.
Laak R. 1986. Wastewater Engineering Design for Unsewered Areas. Technomic Publ. Co., Basel-Lancaster.
 
11.
Puchlik M., Ignatowicz K. 2014. Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Praca zbiorowa pod redakcją T.M. Traczewskiej i B.Kaźmierczaka. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
 
12.
RMŚ 2014. Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz.U. 2014 poz. 1800).
 
13.
Spychała M., Błażejewski R., Nawrot T. 2013. Performance of innovative textile biofilters for domestic wastewater treatment. Environmental Technology, 34(2), 157–163.
 
14.
Spychała M., Łucyk P. 2015. Effect of thickness of textile filter on organic compounds and nutrients removal efficiency at changeable wastewater surface level. Nauka Przyroda Technologie, Tom 9, z. 3, 44.
 
15.
Spychała M. 2016. Skuteczność filtrów włókninowych do oczyszczania ścieków w warunkach stałego poziomu piętrzenia. Acta Sci. Pol. Formatio Circumiectus 15(1), w druku.
 
16.
US EPA 2002. Onsite Wastewater Treatment Systems Manual. www.norweco.com/pdf/epa/625R00... Dostęp: 13.12.2015.
 
17.
Viessman Jr. W., Hammer M.J. 1998. Water Supply and Pollution Control. Addison-Wesley.