Maciej Mrowiec 1  ,  
Instytut Inżynierii Środowiska, Wydział Inżynierii Środowiska i Biotechnologii, Politechnika Częstochowska, ul. Brzeźnicka 60 a, 42-200 Częstochowa
Inż. Ekolog. 2015; 44:191–195
Publish date: 2015-10-04
In times of rapid urbanization and climate change has drawn more attention to stormwater runoff to sewer systems. The phenomenon of flooding in urban areas have become increasingly common as a result of heavy rains. Sewage systems in such a short time are not able to accept such a large amount of rainwater flowing on the site, which we experience the phenomenon of rainfall flowing down the street in excessive amounts. The problem of such phenomena can be solved by the development of green roof technology. Even in its simplest form that extensive green roof is able to delay outflow, and store in its entirety falling falls on the area. Everything depends on the layers and the size of the roof. The research study presented at two mini green roof, an area of 1.44 m2. Both cases have different layers. One of them has a layer of non-woven filter layer, the substrate and vegetation. The second station is built of layers of drainage, filter layer, a layer of substrate and vegetation. For experimental purposes a rain shower were used for testing, which allows to calibrate the right amount of water at a specified time. In the research of precipitation 10, 15 and 20-minute tested. On the bench number 1 a reduction in the range of 48.9 to 97.5% was achieved. The second experiment stand showed a higher retention capacity ranged from 74.5 to 94.7%. We concluded that the use of extensive green roofs in cities can help reduce storm water runoff from impervious surfaces.
1. Berretta Ch., Poë S., Stovin V. 2014. Moisture content behaviour in extensive green roofs during dry periods: The influence of vegetation and substrate characteristics, Journal of Hydrology, 511, 374–386.
2. Burszta-Adamiak E., Mrowiec M., 2013. Modelling of green roofs hydrologic performance using EPA’s SWMM. Water Science & Technology, 68(1), 36–42.
3. Burszta-Adamiak E., Łomotowski J., Wiercik P., 2014a. Zielone dachy jako rozwiązania poprawiające gospodarkę wodami opadowymi w miastach, 39, 26–32.
4. Burszta-Adamiak E., Fiałkiewicz W., 2014b. Modelowanie odpływu wód opadowych z dachów zielonych, 39, 15–25.
5. Farrell C., Ang X.Q., Rayner J.P. 2013. Water-retention additives increase plant available water in green roof substrates, Ecological Engineering, 52, 112–118.
6. Kotowski Andrzej, 2011. Podstawy bezpiecznego wymiarowania odwodnień terenów, wyd. Seidel – Przywecki, 80–87.
7. Köhler M., Poll P.H. 2010. Long-term performance of selected old Berlin greenroofs in comparison to younger extensive greenroofs in Berlin, Ecological Engineering, 36, 722–729.
8. Lee J.Y., Moon H.J., Kim T.I., Kim H.W., Han M.Y. 2013. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system, Enviromental Pollution, 181, 257–261.
9. Mrowiec M., Sobczyk M., 2014a. Dachy zielone a gospodarka wodami opadowymi na terenach zurbanizowanych. Rynek Instalacyjny, 80–82.
10. Mrowiec M., Sobczyk M. 2014b. Ekologiczne zagospodarowanie wód opadowych – zielone dachy. Woda-Środowisko-Obszary Wiejskie, 53–61.
11. Seidl M., Gromaire M. Ch., Saad M., Gouvello De B. 2013. Effects of substrate depth and rain-event history on the pollutant abatement of green roofs. Environmental Pollution,183, 195–203.
12. Stovin V., Poë S., Berretta Ch., 2013. A modelling study of long term green roof retention performance. Journal of Environ. Manage., 131, 206–215.
13. Teemusk A., Mander Ü. 2011. The influence of Green roofs on runoff water quality: A case study from Estonia. Water Resour. Manage., 25, 3699–3713.
14. Volder A., Dvorak B. 2014. Event size, substrate water content and vegetation affect storm water retention efficiency of an un-irrigated extensive green roof system in Central Texas. Sustainable Cities and Society, 10, 59–64.