PORÓWNANIE METODY GUMIŃSKIEGO I TELEDETEKCJI SATELITARNEJ W ASPEKCIE WYZNACZANIA DAT POCZĄTKU OKRESU WEGETACYJNEGO NA OBSZARZE POLSKI
Krzysztof Bartoszek 1  
,  
 
 
Więcej
Ukryj
1
Zakład Meteorologii i Klimatologii, Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Al. Kraśnicka 2c, 21-718 Lublin
2
Pracownia Geoinformacji, Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Al. Kraśnicka 2c, 21-718 Lublin
Data publikacji: 15-11-2015
 
Inż. Ekolog. 2015; 45:99–105
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Celem niniejszej pracy było porównanie dat początku okresu wegetacyjnego (OW) na obszarze Polski w okresie 2001–2010, które wyznaczono na podstawie dwóch niezależnych metod. Do wyznaczania dat metodą Gumińskiego wykorzystano średnie miesięczne wartości temperatury powietrza z punktów gridowych rozmieszczonych na terenie kraju. Natomiast do określenia dat początku OW metodą teledetekcji satelitarnej wykorzystano dane pochodzące z NASA LP DAAC, które były wynikiem pomiarów wykonywanych przez wielospektralny skaner MODIS umieszczony na satelitach Terra i Aqua. Wykazana została znaczna zgodność średnich terminów początku OW w Polsce wyznaczonych tymi dwoma metodami, co może sugerować istotny wpływ czynnika termicznego na wzrost aktywności fotosyntetycznej roślinności po okresie zimowym. Obydwie metody potwierdziły, że przeciętnie najwcześniej początek OW występuje w południowo-zachodniej części kraju, natomiast najpóźniej w Polsce Północnej i na obszarach górskich.
 
REFERENCJE (19)
1.
Bartoszek K., Siłuch M., Bednarczyk P. 2015. Characteristics of the onset of the growing season in Poland based on the application of remotely sensed data in the context of weather conditions and land cover types. European Journal of Remote Sensing, 48, 327–344.
 
2.
Bunn A.G., Goetz S.J. 2006. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density. Earth Interact, 10 (12), 1–19.
 
3.
Craine J.M., Reich P.B., Tilman G.D., Ellsworth D., Fargione J., Knops J. 2003. The role of plant species in biomass production and response to elevated CO2 and N. Ecology Letters, 6 (7), 623–630.
 
4.
De Beurs K.M., Henebry G.M. 2010. A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Canadian Journal of Remote Sensing, 36 (1), 87–110.
 
5.
Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 (656), 553–597.
 
6.
Gumiński R. 1948. Próba wydzielenia dzielnic rolniczo-klimatycznych w Polsce. Przegląd Meteorologiczny i Hydrologiczny, 1 (1), 7–20.
 
7.
Huculak W., Makowiec M. 1977. Wyznaczanie meteorologicznego okresu wegetacyjnego na podstawie jednorocznych materiałów obserwacyjnych. Zeszyty Naukowe SGGW, 25, 65–72.
 
8.
Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195−213.
 
9.
Jaagus J., Ahas R. 2000. Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 15 (3), 207–219.
 
10.
Jeganathan C., Dash J., Atkinson P.M. 2014. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143, 154–170.
 
11.
Karlsen S.R., Elvebakk A., Høgda K.A., Grydeland T. 2014. Spatial and Temporal Variability in the Onset of the Growing Season on Svalbard, Arctic Norway – Measured by MODIS-NDVI Satellite Data. Remote Sensing, 6, 8088–8106.
 
12.
Karlsen S.R., Tolvanen A., Kubin E., Poikolainen J., Høgda K.A., Johansen B. i in. 2008. MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia. International Journal of Applied Earth Observation and Geoinformation, 10, 253–266.
 
13.
Kim Y., Kimball J.S., Zhang K., McDonald K.C. 2012. Satellite detection of increasing northern hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sensing of Environment, 121, 472–487.
 
14.
Nieróbca A., Kozyra J., Mizak K., Wróblewska E. 2013. Zmiana długości okresu wegetacyjnego w Polsce. Woda-Środowisko-Obszary Wiejskie, 13 (2), 81–94.
 
15.
Schaaf C.B., Gao F., Strahler A.H., Lucht W., Li X.W., Tsang T. i in. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83, 135−148.
 
16.
Siłuch M., Bartoszek K. 2012. Możliwości wykorzystania danych satelitarnych do wyznaczania początku i końca okresu wegetacyjnego. Woda-Środowisko-Obszary Wiejskie. 12 (2), 245–255.
 
17.
Xu L., Myneni R.B., Chapin F.S., Callaghan T.V., Pinzon J.E., Tucker C.J. i in. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 3, 581–586.
 
18.
Zhang X., Friedl M.A., Schaaf C.B., Strahler A.H., Hodges J.C.F., Gao F. i in. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84 (3), 471−475.
 
19.
Żmudzka E. 2013. The influence of circulation patterns on extreme thermal resources in the growing season and the period of active plant growth in Poland (1951-2006). Meteorologische Zeitschrift, 22 (5), 541–549.