EKOTOKSYCZNOŚĆ I FITOTOKSYCZNOŚĆ ŚRODKÓW OCHRONY ROŚLIN WOBEC GRZYBÓW RYZOSFEROWYCH I SIEWEK PSZENICY OZIMEJ
 
Więcej
Ukryj
1
Katedra Entomologii, Fitopatologii i Diagnostyki Molekularnej, Uniwersytet Warmińsko Mazurski w Olsztynie, ul. Prawocheńskiego 17, 10-721 Olsztyn
Data publikacji: 15-11-2015
 
Inż. Ekolog. 2015; 45:106–113
SŁOWA KLUCZOWE:
STRESZCZENIE ARTYKUŁU:
Procedura rejestracji środków ochrony roślin wymaga analizy ich ubocznego działania na mikroorganizmy glebowe. Do gleby trafia najwięcej pozostałości tych preparatów, jednak ich oddziaływanie na grzyby jest stosunkowo słabo poznane. W badaniach prowadzonych w warunkach szklarniowych oceniono wpływ wybranych środków ochrony roślin na liczebność grzybów zasiedlających ryzosferę siewek pszenicy ozimej oraz rozwój roślin. Zastosowane środki ochrony roślin działały inhibicyjnie na ryzosferowe grzyby strzępkowe, drożdże były odporne na ich doglebową aplikację. Tebukonazol wyróżnił się najsilniejszym redukcyjnym działaniem wobec grzybów strzępkowych, a propikonazol wykazywał największą fitotoksyczność w stosunku do siewek pszenicy ozimej. Azoksystrobina miała najsłabsze działanie eko- i fitotoksyczne, po jej aplikacji w glebie najczęściej bardzo dynamicznie wzrastała liczba grzybów rodzaju Acremonium.
 
REFERENCJE (25):
1. Adetutu E.M., Ball A.S., Osborn A.M., 2008. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities. Journal of Applied Microbiology, 105, 1777–1790.
2. Čadková E., Komárek M., Debord J., Puppa L.D., Bordas F., Bollinger J.C. 2013. pKa constant determination of two triazole pesticides: tebuconazole and penconazole. J Solution Chem, 42, 1075–1082.
3. Coppola L., Comitini F., Casucci C., Milanovic V., Monaci E., Marinozzi M., Vischetti C. 2011. Fungicides degradation in an organic biomixture: impact on microbial diversity. New Biotechnology, 29 (1), 99–106.
4. Cycoń M., Wójcik M., Piotrowska-Seget Z. 2011. Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodegradation, 22, 573–583.
5. Focus, 2000. FOCUS groundwater scenarios in the EU review of active substances. Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference Sanco/321/2000 rev.2, 202.
6. Glushakova M., Kachalkin A.V., Chernov I. Y.2011. Specific Features of the Dynamics of Epiphytic and Soil Yeast Communities in the Thickets of Indian Balsam on Mucky Gley Soil. Eurasian Soil Science, 44 (8), 886–892.
7. Kim I.S., Beaudette L.A., Shim J.H., Trevors J.T., Suh Y.T. 2002. Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant and Soil, 239, 321–331.
8. Komárek M., Čadková E., Chrastný V., Bordas F., Bollinger J.C. 2010. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environment International, 36(1), 138–151.
9. Ma X.-K., Ding N., Peterson E.C. 2015. Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation, 26, 259–269.
10. Majchrzak B., Kurowski T., Okorski A., 2008. Fungi isolated from the roots and stem bases of spring wheat grown after different cruciferous plants as forecrops. Polish Journal of Natural Sciences, 23 (2), 299–309.
11. Martin J.P. 1950. Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi, Soil Science, 38, 215–220.
12. Martyniuk S., Martyniuk M. 2003. Occurrence of Azotobacter spp. in Polish soil Polish Journal of Environmental Studies, 12 (3), 371–374.
13. Mikš-Krajnik M. 2014. Ćwiczenia laboratoryjne z mikrobiologii. www.uwm.edu.pl/wnz/v3/fck_file... rokII_cw1(1).
14. Muñoz-Leoz B., Ruiz-Romera E., Antigüedad I., Garbisu C. 2011. Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 43(10), 2176–2183.
15. Muñoz-Leoz B., Garbisu C., Charcosset J.Y., Sánchez-Pérez J.M., Antigüedad I., Ruiz-Romera E. 2013. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Science of the Total Environment, 449, 345–354.
16. Rozporządzenie (WE) NR 1907/2006 Parlamentu Europejskiego i Rady z dnia 18 grudnia 2006 r. w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH) i utworzenia Europejskiej Agencji Chemikaliów.
17. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1107/2009 z dnia 21 października 2009 r. dotyczącym dopuszczania do obrotu środków ochrony roślin.
18. Salam A.J., Nilanjana Das N. 2014. Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol, 30, 1301–1313.
19. Sapieha-Waszkiewicz A., Marjańska-Cichoń B., Miętkiewski R., 2010. Porównanie wpływu preparatów biotechnicznych Bioczos S, Biosept 33 SL i syntetycznych pestycydów na kiełkowanie zarodników grzybów owadobójczych. Ochrona Środowiska i Zasobów Naturalnych, 46, 117–125.
20. Sauter H., Steglich W., Anke T. 1999. Strobilurine: evolution einer neuen wirkstoffklasse. Angew Chemie, 111, 1416–1438.
21. Verma J.P., Jaiswal D.K., Sagar R. 2014. Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol, 13, 429–466.
22. Wachowska U. 2010. Charakterystyka fungicydów strobilurynowych z uwzględnieniem problemu odporności fitopatogenów (artykuł przeglądowy). Postępy Nauk Rolniczych, 30, 77–88.
23. Wachowska U., Okorski A., Głowacka K. 2006. Population structure of microoganisms colonizing the soil environment of winter wheat. Plant, Soil and Environ, 52, 39–44.
24. Wang C., Wu J., Zhang Y., Wang K., Zhang H. 2015. Field dissipation of trifloxystrobin and its metabolite trifloxystrobin acid in soil and apples. Environ Monit Assess (2015) 187, 4100 DOI 10.1007/s10661-014-4100-3.
25. Wytyczne EPPO PP 1/135(3), Phytotoxicity assessment. W: Bulletin OEPP/EPPO Bulletin 2014 44 (3), 265–273.